
!AD-A1s 247 WISCNIN WNIV.WADISOM MATHEM4ATICS RESEARCH CENTER F/6 12/1
'THE LINE"R FINITE LEENT METHO FOR A TWO-OI1DIBZCWAL SINSILA*-4TC(U)
NAY UE 5 Z 2140U DAAft"DS-C-OS*1

tACLASSZPZED M1C-TSR-13GO0N

~IEEEEEEEE



III I 1,.1
II II

-M~ - III1111 111120

112 * II

* MICROCOPY RESOLUT
" 

N TEST CHART

NATIONAL BUREAU OF STANDARDS 1963 A

L B



NRC Technical Sumary Report #2380

.1lE LINEAR FINITE ELJLiN ME1IIOD FOR A
TWO-DIMENSIONAL SINGULAR BOUNDARY VALUE

r=4 PROBLEM

MfS. Z. Zhou
Ot-

Mathematics Research Center
University of Wisconsin-Madison

610 Walnut Street
Madison, Wisconsin 53706

May 1982

(Received March 16, 1982)
0-

C_)

Uz-1 Approved for public release

Distribution unlimited

ttponsored byj 29982

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park
North Carolina 2770982 0 20 2H82~ 062 5



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

THE LINEAR FINITE ELEMENT METHOD FOR A TWO-DIMENSIONAL
SINGULAR BOUNDARY VALUE PROBLEM

* S. Z. Zhou

Technical Summary Report #2380
May 1982

ABSTRACT

The following model problem is studied:

E. L rO L U)r + Lz ( au) .f

1 1 au a a

where 2 is a bounded open domain with r < 0 in (r,z) plane, rI =a\ro,

ro - afl r{(r,z) : r - 0). We introduce weighted Sobolev spaces Vk(k

1,2), and prove:

(1) The problem has a unique solution u, and u e VI () n V ().
0

(2) The linear finite element solution uh exists and is unique.

(3) The error u-uh in "energy norm" is of 0(h
2). Particularly, if A

is a polygon, then

Iu - Uhl0I, = 0(h)

where leik,Q(k - 1,2) are the V k  normh.
the Vnorms.

AMS (MOS) Subject Classifications: 65N30, 65N15
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SIGNIFICANCE AND EXPLANATION

For two dimensional singular boundary value problems of form:

2u k 2
12 T2+! - L

8x2  y y 2

r U g

where 92 in a bounded open domain with y > 0 in (x,y)-plane,
rI M af n ((x,y) % y > 01, Parter [13] has proposed finite difference

methods and established the corresponding theory. Wilson t16] has proposed a

finite element method for other types of two dimensional singular problems,

but did not study the convergence theory. This paper extends earlier works on

convergence of the methods to such problems.

• /D

The responsibility for the wording and views expressed in this descriptive sumary lies
with MRC, and not with the authors of this report.
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THE LINEAR FINITE ELEMENT METHOD FOR

TWO-DIM4ENSIONAL SINGULAR BOUNDARY VALUE iROn LEN

S. Z. Zhou

Introduction

The numerical solution of singular boundary value p blems have been studied by

several authors. The finite difference methods and its heor for a type of two-

dimensional singular boundary value problems are given n [ 1, [13]. The finite element

method for axisymuetric elastic solid is proposed in 1 C 15) [11], [14] and (20], gives
I

a proof of the convergence of the finite element meth do f@r one dimensional singular

problems. [12] proves the "optimal" order of convernce or the method of [16] provided

the loads are axisymmetric and the solution is in C k+(B). The convergence of the linear

finite element method for two dimensional singular Dirichlet problem is proved in [18]. In

this paper we will prove the so-called "optimal" order of convergence of the linear fi i e

element method for the following model problem:

rr uu - 0 (1.1)

where Q is a bounded open domain with r > 0 in (r,z)-plane,

rI - an/r o , ro - 96 n {(r,z): r - 0}.

We assume:

() The function B is uniformly Lipschitz continuous in 9.

(1i) 0 • 0 > 0, 0 is a constant.
(iii) r'2 • L2 (Q).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Under the (x,y,z) coordinate system we have

fe V' Ia ' e+B'- 25

n* B ydz cos m + sin e) #*r- dxdydz (2.5)

Since r-* and r
"  

* are bounded in (). v e mI(0*), we may take the limit through

(2.5) as n a and hence we obtain (2.5) an well as (2.4) with v,v* replacing Vn, Vn'

respectively. (2.1) in proved. Q.E.D.

Simple calculation derives the following results.

Corollary 2.1. If v* e H (0*), then

av* av 3v sine

-x w cn ae -

- snv* v s v cose in Q*

Corollary 2.2. Assume v is independent of e. Then we have for v* e HI(12*).

av * av C o v * v siByx By icos e . ! si

for v* e a 2( * )

a2v*" 32v Ds20 + a v sin2e a2v* - 2v sin2e + 2- oo2

2 2 2r 2 2 2rByx 3r Bvin TVy By 2 vBx
2  Br2  

Br y' 2 Br2  B

a2v* 2v 1 Bv
. 2 c - -) sin 0 coo e,

B2v* B2v B2v, B
2
v  B

2v' B
2v

=B xz -z"z~ Be ,~ Br - s
2  2  

2 22-
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3. Spaces v1 . v2 (2], [17])
We define functionals 1-1 k 0, 1, 2, as follows:

Iv " ( rdrdz)/2
9

Ivi 1 , " ( 2 ) 1avl )/2

VI = lal Vi 2  + *I 3v 122,0 IaJ2 0'a r 3r 0, a

Definition 3.1. Assume that D is an open or closed set in (r,z)-plane, D* the

correspondent axisymmetric set in (x,yz)-space, AM() the set of real functions defined in

D, and

A*(D*) - (v* : v* real function defined in D*, and there

exists v e A(D) such that v*(xyz) - v(/x + y2,z)1 .

We define a mapping Ts A*(D*) + AM() as follows:

Tv*(x,y,z) = v(r,z)

Obviously, the mapping T is one-to-one.

Definition 3.2. U k(
*
) - H tn) 0A*(Q*), k - 0,1,2.

It is easy to see that U k(9*) is a closed subspace in Hk (9*). Now establish the

relations between the norms I.E1k and the functionals I.Ik#R for the elements of

U k( W).

klama 3.1. Assume v* e u (*), v - Tv*. then IvlicD < , and

Iv*l2  - 21rlvl2 V u* e U k (*), k - 0,1 (3.1)
H k(UP) k,Q,

EvEW N 2  < *v*12 2Tevil2  v u* e u 2 (Q*) (3.2)
2 2, a H2 (Cl') 2 , 0,

Proof. By direct computation and corollary 2.2.

-4-



Definition 3.3. vk (0) - (vsv - Tv, v* e U k (9')), k - 0, 1, 2.

It follows from lemma 3.1 and the closeness of Uk(9') in Hk(9') that

V k(), k - 0, 1, 2, are Banach spaces. We need the following subspace

1 1
V () of V ().

( (vsv - Tv v* C U 1(*) n H 0
1

Let v 6 V1(9) v - Tv, tr v* be the trace of v* on ao*. We define T(trv*) as

the trace of v on r1 . Obviously, it is zero.

By leana 3.1 and the embedding theorems of Hk (*). We obtain the correspondent

theorems of Vk(9*). Particularly, we have the following result.

Lamma 3.2. There exists a constant C' such that

'v1 2  ( C' f + (. )2]rddz, V v e V() (3.3)

Finally, the following statement on denseness may be proved (see [17] for V1 . the

proof is similar for V2 .

Le mma 3.3. Assume that the domain 9 has a locally Lipschitz Boundary. Then C()

is dense in Vk(), k - 1, 2.

Remark 3.1. Lemma 3.3 is not a direct corollary of the denseness theorem of

Hk(9*). If v* e Hk(*), then there exists a sequence Vn* e C (N*) converging to

v' in H k(C). But we can not claim that v e e A'(9').n

Remark 3.2. The facts v e C7(6) and v - Tv' do not imply that v' e C(f*).

Counter example; v - r. But v e C°(9) <-> v. e c°(9*).



4. Solution of problem (1.1)

We define a bilinear form B(.
o
) on Vl(D) x V (0) and a linear functional

F(*) on V (a) as follows:

B(u~v) =1 u(vu + a ov
B~u~ fB( Y- r + j- T.) rdrdz

F(v) -f fvrdrdz

00
Then we have the variational formulation of problem (1.1): Find u e v0 (D) much that

B(uv) = F(v)g V v e V1 (0) (4.1)
0

From now on we assume that 2 has a locally Lipschitz boundary.

Theorem 4.1 Problem (4.1) has a unique solution.

Proof: it follows from lema 3.2 and assumptions (i)-(ii) that the bilinear form D(utv)

is coercive and continuous on V0 () x V0(0). and the linear functional F(v) is

continuous on V 1() by virtue of assumption (iii). Hence the conclusion of the theorem
0

is a result of the Lax-Milgram theorem. Q.R.D.

Remark 4.1. Let u be the solution of problem (4.1). Since D(u.v) is symmetric,

I
U is also the solution of the following problems Find u e V (0) such that

0

J(u) - min J(v)

v e V0IQ)
0

where J(v) = B(v,v) - 2F(v).

Consider the boundary value problem in Q* corresponding to problem (1.1):

a- [(B. a* a .* 3 aw*
ax 3. Y(O TZ(O a,] - f*

n*, -L ( a ) + -ry ay) (*-s = f

(4.2)
ao*: w* - 0

where 0* - 0, f* T If. Correspondant variational problem is: Find we u0(QD)

such that

B (we,v*) " 1I(v*), V v* e H ( ) (4.3)

-6-



where

f *ava*v awv av* w*av*
B (w.v.) - 4.- )d+ dd

F v 1
- f f*v*dxdyda

From now on we assumes

(Iv). The boundary 3(1' is smooth enough to ensure that problem (4.3) has a unique

1 2
solution w* and w* 6 H (n*) n H (0*). For example, we may assume that 821 is of

class C2 (see, for instance, E9, p.176]) or that the domain Q* is convex.

Theorem 4.2. Let u be the solution of problem (4.1). Then

0

prooff Let u t Tlu. We define for v* e H0 (01) that

v(r,e,x) - v*(x,y,z)

21
v(r,z)- I v(r,e,z)de

0

It is easily proved that

e • I (a) (4.4)

a;7 f21av do, 8v . f v 2W .

3r'T zae, z=f de (4.5)
0 0

Now we prove that u* is the solution of problem (4.3). It follows from lemma 2.1, (4.4),

(4.5) and (4.1) that for v* e H6(9*)

Blu*,v*, - Ple -v) f [ fo -v-- . --uv- fu)dG]rdrdz

au 3v a av
[1 L LV + u - fvlrdd - so(u, -V1 - F(; ) - 0.

Hence u* is the solution of problem (4.3), and u* e H1(0 t ) H2 ((*) by assumptione0

I?

': : (iv). According to definition 3.3 we obtain the conclusion of the theorem. Q.E.D.

[i-7-



5. Linear finite element solution and its order of convergence order

Assume that the domain 2 is convex. Let Th  {C i,... ,Cmu be a triangula-

tion of 0, hi the maximum edge of the triangle Ci, 01 the minimum angle of

m

Ci, h - max hi, e - minGi1h1Ci assume:

i
(a). 0 0 9 > 0, 0 in independent of h ([71, [19]).

0 o

Define a linear finite element space V
h  

as follows:

h [vh C c
0() : vh is linear function in Ci, i = I,...,mi

vh - 0 on (a - ah.
) 
u r,)

Then it is easy to prove that Vh C V1(0). We have the correspondant discrete problem for

h
problem (4.1): Find uh e V such that

Teem51 Prbe(1 BhUhavh) - F(vh), Vh e vh (5.1)

Theorem 5.1. Problem (5.1) has a unique solution.

The proof in similar to that of theorem 4.1.

Remark 5.1. The solution Uh of (5.1) is also the solution of the minimization problem:

Find uh e V such that J(U h) - minh J(Vh).
vhe
Vh

Assume that u is the solution of problem (4.1), UI  the piecewise linear

intrpolation corresponding to the triangulation Th. For any triangle C e The we now

estimate lu - Ui,c .  Let PJ - lrjj,1, J - 1,2,3 be the vertexes of C,

A (r,z),j - 1,2,3 the so-called barycentric coordinates ([4, p. 451), i.e. the basis

functions for the linear interpolcation on C:

A (P -) j (i,j - 1,2,3)

Then we have for any function v defined on c and its linear interpolation Vi:

, k(PlvlP) v (lP), V P e C, (5.2)

Particularly,

- Aj " 1, Ajrj - r, Aiz x a, V(r,s) e C, (5.3)

It follows from (5.3) that} (r - r) - jlz - z) -0,V (r,z) e c (5.4)

j j
}I .- 8-



The proof of the following lemma belongs to (3].

LAma 5.1. Assume that v e V2(C), and the condition (a) is true. Then

IV 1 
2  

4 Mh21vl2 (5.5)1 1I , c 2'

where the constant K is independent of C and V.

Proof: Assume v e C7(c) temporarily. Expand v at the point P - (r,z) by using the

Taylor's formula with integral remainder (see, for Instance [6,p.361):

_ aVlP )  2
V(P ) - v(P) (r r) -- + f (1-t)d v(M )dt, j - 1,2,3 . (5.6)

r 0

where

d (r rr + (Z - z)-, d d d
j z j j

N- Pt + P(1-t)
j j

It follows from (5.2), (5.3) and (5.6) that

V (P) - v(P) - [ A (p)[v(p - v(P)]

S(AP)(r - r) av( ) + lz. -zZ)

+ I1 - t)A (P)d
2 
v(M )dt

By virtue of (5.4) the first sum vanishes, and we have

V (P) V (P I f (- t)A (P)d v(M )dt (5.7)

Differentiating (5.7) we obtain

av v 1 2 a 1 2 3 vM)
- "- 0 ( -t)( d4 - 2Ad j -)V(Mj)dt + I f (lt)Ajd-r (1-t)]dt (5.8)

j 0 jO



Integrating by parts the integrals in the second sum, noting (5.4) and that

d [djvlM] = d v(M), we derive from (5.8) that

v v 1 3) 2
=: I - t)- , d v(M.)dt 

(5.9)Tr- - r 3/ -)r dj
jo0

It follows from the uniform basis condition (a) that (see, for instance, [8] or [15,

p.137])
. 1 1 MIh- (5.10)

where h is the maximum edge of c, M 1 = 4/sin e 0 Hence we haveo

I V 1 h1 II1-tlld2vM)Idt- - -r < M h l [ J (1 t d

jo

and then

vI rdrdz 2 -2 t)/4(1 . t)5/4Id2v(M )jdt) 2rdrdz
c c jO

3M2h-
2  

I 11(I - t)
5
/2d

2 
v(Mj)1

2
dtf

1
1(1 - t)- 1/2dt)rdrdz

j c 0 0

= h-2 I'dt I 1-t) 5  - r)a+(z-.) 2vl%)12rdrd

1 0 c

2
1 fdtf a 2 vM ) a2v(M ) 

3
vl)

6Mh 1 (I - t)5h -I + 21 I - I)2rdrdz
j 0 C 

3
raz 

3
raz 32

2
where M2 72 m I Make variable transformations in the integrals as follows:

C - r t + r(1-t) , n - z + z(1-t)

Then M = (C,n), and the triangle C reduces to a similar triangle Cj,t with the
Ja t

. similarity transformation center P . Hence the right side of (5.11) become:z

-10-



1
II

2 h2 ,fdf (1Vt)-2 (r t)(n 2 a V(Cn) 2 a V(C,_ )2M h f t  t' ) 2 + I-acar I + 2)d~dll

j 0 C Jvt

M2h 2 1 f dt f (-t) /2 C(---)d~dn (since -r jt 0 1
j 0 cJ' t

x2  1 f dt f (1-t) /---)rdCdn (since C,,t C C)
j0 c

2 2 2
314 2 h

2 f (---)/d;d" J (1-tl /t N M3h IvI
c 0 2,c

Hence we obtain by (5.11) that

avi v2 2 2
C r- 2 rdrdz M h V223r ar3h I2, c

C

Similarly we obtain
(-I V2 2 2

vI- L)2rdrdz ( M4 h IvI2,cf ( 3- 4 2,
c

.2 2

S(VZ -v)2rdrdz 
I M5h 2vI

2 2,c

Iv - V 1 2 C IvI 2, v v e cm(c), 
(5.12)I 1c2

Finally (5.5) is deduced from (5.12) and lemma 3.3. Q.E.D.

Define "energy norm" Bh (u,u) on ah as follows:

B (u'u) f (L) ( 2 rdr

Theorem 5.2. Assume that uh is the solution of (5.1), u the solution of (4.1). Then

SBh(UUhU-Uh) 0(h 2 ) (5.13)

Proof: uh minimizes the error u - uh in the "energy norm" on A- B(v,v), i.e. (see

E15, p. 39])

B(u Uh, - uh) min B(u- v ,u- V

-h-



a

Since uh  vh  
0  onfl h we have

h(u - %hu - u1 - min h Bh(u -vhU vh)

vh h h

h
Define uI =0 on a - ah . Then uI e v. So

B u2 (5.14)ha

Dhu- . % h(U - U1 ,U-U~i) ( mx 9lu - u Il.(54

By virtue of lemma 5.1 we have

. 2 I |U - uh 1 |2,i 4 (h lu| (5.15)
I 1'ah Ul I ~cj i-I 2,cj 2,9

(5.14) and (5.15) prove that (5.13) is valid. Q.E.D.

If U is a polygon, then Qh - a' Sh(vuv) - B(v,v). Since B(u,v) is coercive on

V 1(), we have
0

Corollary 5.1. If U is a polygon, then

lu - 0(h)

EU -UhI0 fi- 0(h2)lu - uhlogO9
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3 ABSTRACT (cont.)

. where Q is a bounded open domain with r < 0 in (r,z) plane, r I - ro,

ro - aa n {(r,z) : r - 0). we introduce weighted Sobolev spaces vk(k -

1,2), and prove:

(1) The problem has a unique solution u, and u e vI () ) V 2().
0

(2) The linear finite element solution uh exists and is unique.

(3) The error u-uh in menergy norm" is of 0(h2 ). Particularly, if

iq - polygon, then
Eu - uhIl,a - O(h)

lu- uhloQ O(h2

where 1Ik (k - 1,2) are the norms.
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